HEATING WATER SERIES FAN POWERED TERMINAL UNIT SCHEDULE

<table>
<thead>
<tr>
<th>TAG</th>
<th>PROPOSED UNIT</th>
<th>MFG.</th>
<th>MODEL NUMBER</th>
<th>APPLICATION</th>
<th>UNIT SIZE</th>
<th>CAP (CFM)</th>
<th>EPT</th>
<th>VOLS</th>
<th>HP</th>
<th>VTR</th>
<th>CAP (CFM)</th>
<th>EPT</th>
<th>VOLS</th>
<th>HP</th>
<th>VTR</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>219</td>
<td>LEVEL 2</td>
<td>ROOM</td>
<td>150</td>
<td>CLASSROOMS</td>
<td>FUNCTIONAL</td>
<td>1758</td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>LEVEL 2</td>
<td>ROOM</td>
<td>150</td>
<td>CONFERENCE</td>
<td>FUNCTIONAL</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>LEVEL 2</td>
<td>ROOM</td>
<td>103</td>
<td>WOOD/METAL</td>
<td>FUNCTIONAL</td>
<td>165</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. INCLUDE ADJUSTABLE STOPS SO THAT GRILLE DOES NOT ROTATE TO HIT WALL_BASED FINAL INSTALLED CONDITION.
2. INCLUDE WALL MOUNT BRACKET, INSTALL PER MANUFACTURER'S INSTRUCTIONS.
3. PROVIDE VIBRATION ISOLATION AND SEISMIC RESTRAINT PER SPECIFICATIONS.
4. PROVIDE ECM (ELECTRONICALLY COMMUTATED MOTOR) WITH FACTORY MOUNTED POTENTIOMETER FOR SPEED ADJUSTMENT.
5. PROVIDE VARIABLE FREQUENCY DRIVE (VFD) PROVIDED BY MECHANICAL, WIRED BY ELECTRICAL.

DIFFUSER AND GRILLE SCHEDULE

<table>
<thead>
<tr>
<th>TAG</th>
<th>DESCRIPTION</th>
<th>TYPE</th>
<th>MFG.</th>
<th>MODEL NUMBER</th>
<th>AREA SERVED</th>
<th>LOCATION</th>
<th>SIZE (IN)</th>
<th>AIRFLOW (CFM)</th>
<th>RPM</th>
<th>VTR</th>
<th>MATCH COLOR</th>
<th>DUCT COLOR</th>
<th>MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>272</td>
<td>TITUS 23RL</td>
<td>AEROBLADE RETURN GRILLE</td>
<td>TITUS</td>
<td>23RL</td>
<td>3/4" SINGLE SPACING, 45° DEFLECTION SEE PLANS</td>
<td>WHITE</td>
<td>STEEL</td>
<td>1-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OUTDOOR AIR CALCULATION - SINGLE ZONE OR 100% OSA SCHEDULE

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>AHRI-E</th>
<th>BASED ON ASHRAE 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROOM #</td>
<td>ZONE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>LEVEL 2</td>
<td>48"x48" Room</td>
</tr>
<tr>
<td>201</td>
<td>LEVEL 1</td>
<td>DECTORED Area</td>
</tr>
</tbody>
</table>

OUTDOOR AIR INTAKE FLOW (CFM), VOT 1185

<table>
<thead>
<tr>
<th>oom</th>
<th>ZONE DESCRIPTION</th>
<th>APPLICATION</th>
<th>AREA (SF)</th>
<th>TABLE 4-1 (COEFFICIENTS)</th>
<th>TABLE 4-2 (COEFFICIENTS)</th>
<th>CALCULATED DOCUMENTS</th>
<th>OUTDOOR AIR</th>
<th>OUTDOOR AIR (CFM)</th>
<th>EXHAUST</th>
<th>EXHAUST</th>
<th>ZONE AIR</th>
<th>ZONE AIR (CFM)</th>
<th>EXHAUST</th>
<th>EXHAUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>202</td>
<td>LEVEL 2</td>
<td>48"x48" Room</td>
<td>QUADRANTED AREA & C</td>
<td>1726</td>
<td>0.055</td>
<td>0.055</td>
<td>45</td>
<td>0.1</td>
<td>0.1</td>
<td>45</td>
<td>0.1</td>
<td>0.1</td>
<td>45</td>
<td>0.1</td>
</tr>
<tr>
<td>201</td>
<td>LEVEL 1</td>
<td>DECTORED Area</td>
<td>COMPRESSED VERSION</td>
<td>228</td>
<td>0.77</td>
<td>0.77</td>
<td>45</td>
<td>0.1</td>
<td>0.1</td>
<td>45</td>
<td>0.1</td>
<td>0.1</td>
<td>45</td>
<td>0.1</td>
</tr>
</tbody>
</table>

OUTDOOR AIR INTAKE FLOW (CFM), VOT 1185
KEYED NOTES:
1. PROVIDE REDUCER TO CONNECT EXHAUST DUCT TO LASER PRINTER.
2. PROVIDE CURRENT TRANSDUCER IN ELECTRICAL FEED TO LASER PRINTERS, GG TO PROVIDE, HW TO MONITOR LASER HAZARD LIGHT TEST, HW IN DD TO INTERLOCK FAN OPERATION WITH COMMENTS.
4. COORDINATE-final WALL MOUNT SOLDERING SNORKEL LOCATION WITH ARCH. INSTALL PER MANUFACTURER'S SPECIFICATIONS.
5. PROVIDE 310 CFM REBALANCE EXISTING VAV FOR NEW AIRFLOW.

SHEET NOTES:
A. CONTRACTOR SHALL VERIFY ALL CONNECTION TO EXISTING WORK PRIOR TO BIDDING AND CONSTRUCTION.
B. COORDINATE ALL WORK TO CLEAR ARCHITECTURAL AND STRUCTURAL ELEMENTS. NO WORK SUCH AS PIPE, DUCT, ETC., TO BE IN CONTACT WITH ANY OTHER EQUIPMENT OR ELEMENTS.
C. CONTRACTOR SHALL COORDINATE ALL TAGS AND NAMING CONVENTIONS WITH UWB.

LEVEL 1 - FLOOR PLAN - HVAC AIRSIDE

LEVEL 1 - HVAC AIRSIDE
M3.1
ATTENTION: ADD A NOTE THAT INCLUDES A LIST OF THE TERMINAL UNIT TAGS THAT ARE APPLICABLE FOR THIS CONTROL SCHEMATIC THEN DELETE THIS NOTE. NOTE SHOULD BE SIMILAR TO "DETAIL APPLIES TO VAV-1 AND VAV-2". IF DETAIL APPLIES TO EVERY TERMINAL UNIT THERE IS NO NEED FOR SUCH A NOTE.

COLD PRIMARY SUPPLY AIR

AO - COLD DUCT DAMPER
AI - COLD DUCT AIRFLOW

NOTES:
1. IN THE COOLING MODE, AS THE ROOM TEMPERATURE INCREASES, THE UNIT MODULATES THE COLD AIRFLOW FROM THE MINIMUM TO THE MAXIMUM COOLING SETTING.
3. IN THE COOLING MODE, AS THE ROOM TEMPERATURE INCREASES, THE UNIT MODULATES THE COLD AIRFLOW FROM THE MINIMUM TO THE MAXIMUM COOLING SETTING IN CONJUNCTION WITH THE CHILLED WATER VALVE, MAINTAINING A CONSISTENT SUPPLY AIR TEMPERATURE.
4. ON RISING CO2 CONCENTRATIONS, INCREASE PRIMARY AIRFLOW FROM MIN TO MAX.

NOTES:
1. ALL CONTROL POINTS TO BE CONNECTED DIRECTLY TO UNIT MOUNTED CONTROLLER WITH INTERFACE TO BAS COMMUNICATION BUS.
2. VAV CONTROL FOR TYPICAL SYSTEMS WITH HEATING HOT WATER REHEAT VALVE WITH FLOATING POINT ACTUATOR. FLOATING POINT ACTUATOR Requires two digital output signals to drive the valve open and closed.
3. PROVIDE PROGRAMMABLE OVERRIDE BUTTON AT EACH TEMPERATURE SENSOR AS AN OVERRIDE TO ENERGY HVAC SYSTEM AFTER NORMAL OCCUPIED HOURS.

DISCHARGE AIR
PLENUM RETURN AIR

FAN/MOTOR M POWERED TERMINAL

AI - DISCHARGE AIR TEMPERATURE
AI - ZONE CARBON DIOXIDE PPM (WHERE SHOWN ON PLANS)
DI - ZONE OVERRIDE AI - ZONE TEMP AI - ZONE SETPOINT ADJUSTMENT

DO - HEATING VALVE (OPEN)
DO - HEATING VALVE (CLOSE)
HW HWS
CHWR CHWS

DI-SUPPLY FAN STATUS STARTER
DI-DAMPER POSITION DO-OPEN/CLOSE
DI-SWITCH POSITION ON/OFF

CS M EXHAUST AIR

FAN POWERED TERMINAL-CONTROL

SNORKEL EXHAUST FAN-CONTROL

LASER CUTTER EXHAUST FAN-CONTROL

NOTE: REFERENCES TO PLANS FOR DUCTWORK ARRANGEMENT.
2. REFER TO SEQUENCE OF OPERATION FOR ADDITIONAL REQUIREMENTS.

Copyright © 2020 Magellan Associates PLLC All rights reserved. The documents prepared by the Architect for this project are instruments of the Architect’s service and are not to be reproduced by the Contractor or anyone representing the Contractor. Such reproduction is prohibited except with the written permission of the Architect. The purchase of additional set(s) of plans does not entitle the purchaser to construct more than one building.
NOTES:
1. PROVIDE HANGERS AND SEISMIC BRACING PER SMACNA AND BUILDING CODE REQUIREMENTS.
2. PROVIDE ELBOWS WITH TURNING VANE RADIUS EQUALS 1.5 TIMES WIDTH. NO TURNING VANES REQUIRED ON DUCT SIZES LESS THAN 180 SQ. IN. IF DUCT VELOCITY IS LESS THAN 1500 FPM.
3. LOCATE MANUAL BALANCING DAMPERS IMMEDIATELY DOWNSTREAM OF EACH DUCT TAP.
4. MAINTAIN MINIMUM CLEARANCE BETWEEN LEADING OR TRAILING ELBOW JOINT AND DUCT TAP FITTINGS. MINIMUM CLEARANCE BETWEEN LEADING OR TRAILING ELBOW JOINT AND DUCT TAP FITTINGS IS 36".
5. PROVIDE LO-LOSS BOOT TAPS OR 45 DEGREE FITTING WITH VOLUME REDUCER AT DIFFUSER NECK SIZE IF BRANCH DUCT IS OVERSIZED.
6. NO TURNING VANES REQUIRED ON RECTANGULAR DUCT SYSTEM ELBOWS. SINGLE THICKNESS VANE UP TO 25" AND DOUBLE THICKNESS VANE FOR HEIGHTS OVER 25". RADIUSED ELBOWS MAY BE USED ON RECTANGULAR DUCT SYSTEMS OR IN EXPERIMENTAL HISTORY.

1. REFER TO STRUCTURAL DESIGN FOR ATTACHMENT REQUIREMENTS AND ADDITIONAL SUPPORT OPTIONS.
2. PROVIDE LO-LOSS BOOT TAPS OR 45 DEGREE FITTING WITH VOLUME REDUCER AT DIFFUSER NECK SIZE IF BRANCH DUCT IS OVERSIZED.
3. LOCATE MANUAL BALANCING DAMPERS IMMEDIATELY DOWNSTREAM OF EACH DUCT TAP.
4. MAINTAIN MINIMUM CLEARANCE BETWEEN LEADING OR TRAILING ELBOW JOINT AND DUCT TAP FITTINGS. MINIMUM CLEARANCE BETWEEN LEADING OR TRAILING ELBOW JOINT AND DUCT TAP FITTINGS IS 36".
5. PROVIDE LO-LOSS BOOT TAPS OR 45 DEGREE FITTING WITH VOLUME REDUCER AT DIFFUSER NECK SIZE IF BRANCH DUCT IS OVERSIZED.
6. NO TURNING VANES REQUIRED ON DUCT SIZES LESS THAN 180 SQ. IN. IF DUCT VELOCITY IS LESS THAN 1500 FPM.

1. REFER TO PLANS FOR SIZES AND CONTINUATION.
2. LOCATE MANUAL BALANCING DAMPERS IMMEDIATELY DOWNSTREAM OF EACH DUCT TAP.
3. PROVIDE HANGERS AND SEISMIC BRACING PER SMACNA AND BUILDING CODE REQUIREMENTS.
4. ELBOWS SHALL BE 5 GORE OR GREATER, DIE-STAMPED, OR PRESSED. PLEATED ELBOWS ARE NOT ALLOWED.
5. CUSHION HEADS OR BULLHEAD TEES ARE NOT ALLOWED.
6. NO TURNING VANES REQUIRED ON DUCT SIZES LESS THAN 180 SQ. IN. IF DUCT VELOCITY IS LESS THAN 1500 FPM.
PIPING SUPPORTS SHALL MEET ALL STATE AND LOCAL SEISMIC RESTRAINT REQUIREMENTS.

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT BUILDING ENVELOPE TERMINATION.
2. LOCATE PIPING TO CLEAR ACCESS DOORS.
3. MAINTAIN ADEQUATE CLEARANCE TO EASILY ACCESS AND MAINTAIN DAMPERS AND CONTROLS.
4. INSULATE PIPING, VALVES AND FITTINGS FROM PIPE MAINS TO COIL CONNECTIONS.
5. MULTIPLE DUTY VALVES ARE NOT ALLOWED.
6. INSTALL ANCHORS AND SUPPORTS TO ALLOW COIL MOVEMENT IN ALL DIRECTIONS WITH MINIMAL PIPE STRESS.
7. SHUTOFF VALVES TO BE BALL TYPE FOR SIZE 2" AND BELOW, AND BUTTERFLY FOR 2-1/2" AND ABOVE.
8. INSULATION TO MEET MINIMUM R-86 RATING.

NOTES:

7. SEISMIC CABLE RESTRAINTS ARE NOT REQUIRED AT EVERY HANGER LOCATION. VERTICAL HANGERS, 2. COORDINATE ANCHORAGE REQUIREMENTS WITH STRUCTURAL DESIGN.
3. PROVIDE SEISMIC CABLE TRANSVERSE BRACING AT 40 FEET AND EACH CHANGE OF DIRECTION.
4. SEISMIC CABLE LONGITUDINAL BRACING AT 80 FEET AND EACH CHANGE OF DIRECTION.
8. SEISMIC BRACING REQUIRED FOR PIPE SIZE 2-1/2" AND LARGER.
1. WATER SHALL BE PIPED COUNTER FLOW TO AIRFLOW, SUPPLY AT BOTTOM.

NOTES:

5. MULTIPLE TAKE-OFFS TO OCCUR
6. INSTALL STRAINER AT LOW POINT. IF NOT POSSIBLE, PROVIDE SEPARATE DRAIN VALVE.
7. MOUNT STRAINER AT LOW POINT. IF NOT POSSIBLE, PROVIDE SEPARATE DRAIN VALVE.

NOTES:

3. UNLESS OTHERWISE NOTED ON THE DRAWINGS, INSIDE CLEAR DIMENSIONS SHALL BE 2" HIGHER THAN TERMINAL UNIT OUTLET HEIGHT AND 4" WIDER THAN TERMINAL UNIT OUTLET WIDTH TO OVERCOME PRESSURE DROP.

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:

1. PROVIDE BACKDRAFT DAMPER IN DUCTWORK AT TERMINAL INLET SIZE WITHIN (MINIMUM), ROUND BRANCH DUCT MAY

NOTES:
KEYED NOTES:
1. Coordinate all cutbling with general contractor and other disciplines. Contractor shall be responsible for all cutting and patching related to their work.
2. Contractor shall thoroughly clean all existing diffusers, grilles, and ductwork. Contractor shall provide temporary covers over all existing ductwork openings throughout the entirety of construction to prevent dirt and construction debris from entering ductwork.
3. Dashed lines indicate demolition scope of work.
4. P.O.C. for new work.
5. Wall is demolded, typ. see arch.

SHEET NOTES:
A. Coordinate all cutbling work with general contractor and other disciplines. Contractor shall be responsible for all cutting and patching related to their work.
B. Contractor shall thoroughly clean all existing diffusers, grilles, and ductwork. Contractor shall provide temporary covers over all existing ductwork openings throughout the entirety of construction to prevent dirt and construction debris from entering ductwork.
C. Dashed lines indicate demolition scope of work.
D. P.O.C. for new work.
E. Wall is demolded, typ. see arch.

LEVEL 1 - FLOOR PLAN - HVAC AIRSIDE - DEMO
LEVEL 1 - FLOOR PLAN - HYDRONIC PIPING - DEMO

KEYED NOTES

- DIMENSIONED PIPES DASHED AND LINED AFTER PIPING IS BROWN, T/F

SHEET NOTES

A. COORDINATE ALL CUTTING AND PLACEMENT WITH GENERAL CONTRACTOR AND EVERY OTHER DISCIPLINE.
B. CONTRACTOR SHALL PROVIDE TEMPOARY COVERS OVER ALL EXISTING TO REMAIN DIFFUSERS, GRILLES, AND DUCT OPENINGS THROUGHOUT THE ENTIRETY OF CONSTRUCTION TO PREVENT DIRT AND CONSTRUCTION DEBRIS FROM ENTERING DUCTWORK.
C. DASHED LINES INDICATE DEMOLITION SCOPE OF WORK.